MULTI ENTRY AND EXIT SYSTEM (MEES)
IMPLEMENTATION AT THE VOCATIONAL SCHOOL
TEXMACO, KARAWANG, WEST JAVA INDONESIA

Idris HM Noor
E-mail: idrishmnoor@yahoo.com

Abstract
Multi Entry and Exit System (MEES) is an innovation that aims to reduce the dropout rates. MEES gives a chance to students to continue studying due to their economic problems. At the same time, they can work and attend the course to get a certification of the subject which is relevant to the school subject. The objective of this case study is to investigate the successful implementation of MEES best practice in Texmaco vocational school (VS). Data collection are focus group discussion (FGD), observation guides, photo and video documentation, key information interviews, and review of secondary data. In analyzing the data, the researcher describes the sequence of the empirical data gathered from secondary source consisting of examining, categorizing, tabulating, triangulating, and recombining evidence, using arrays to display the data, creating displays, ordering the information, using various interpretations, and making a conclusion. The findings of the study was that VS Texmaco was successfully implemented and one of the MEES programs such as to reduce the dropout students who cannot afford the school payment due to their economic problems was to giving them a job as a part time employee at school or at Texmaco industry and live at the small school dormitory.

Keywords: MEES, Vocational School, Dropouts, Students, Employee, Certification.

INTRODUCTION
This case study research on the Multi Entry and Exit System (MEES) as implemented at the Vocational School Texmaco, (VS Texmaco) Karawang, West Java Indonesia is one of the three country case studies selected as input to SEAMEO INNOTECH's Regional Project on Models of Secondary Level Alternative Delivery Modes (ADMs) being implemented in the region.

In the globalization era and ASEAN Economic Community (AEC), ASEAN member countries are facing tight competitive free ASEAN market, trade, and commerce. Therefore, it cannot be denied that Indonesia should produce strong, dynamic human resources who have competence and skill. On the other hand, worse, some countries in ASEAN including Indonesia have increasing school dropout rates, which are increasingly becoming a serious social problem. Another issue is that for the time being, the condition of the graduates of Senior Secondary School (SSS) as well as Vocational School (VS) are still unable to compete with other countries for the jobs at industry due to their lack of competence and skill. Other countries beyond Southeast Asia such as Brazil, Mexico, and Africa also experience the same problem. Some statistics point that in South Asia, 40 percent of children dropout after completing primary school. For older children, such as those in high school, potential dropouts are provided “wages for learning”, a scheme by which children are “paid” to stay in schools in amounts approximating what they would earn as “start-up” workers with no skills (Gatbonton, 2008) if they are not in school. The Philippines also implements the cash conditional transfer (CCT) program just to make children of indigent families attend school.

One of the solutions thought of to address increasing demand for secondary education as well as the problem of increasing dropout rate is the provision of ADM for secondary education. Indonesia, one of the SEAMEO-member countries set up a model called ‘MEES’ as an alternative of education model to reduce the dropout rates due to their economic problems that affect their
ability to afford the school payment, unable to manage the time for schooling because they have to help their parents, and mobility as they moved from cities and provinces.

Among the features of ADM that helps address school dropout and access barriers are qualification requirements for learners are not as restrictive as that of conventional schools, flexibility is given to learners in terms of learning time, entry and exit and period for accreditation/certification, learning materials are made more relevant to the context of the learners and demand of industry helping them improve their chances for employment, perform on the job, or deal effectively with immediate social issues, learning materials are made more easy to understand and in learning chunks to guarantee certain level of success on the part of the learners, and learners, in whatever circumstances they are, can still continue with their schooling and attain some certification which otherwise cannot be attained if only through conventional schooling.

Having viewed the background of the study, there are some problems why this study is important to be conducted. One of them is that the dropout of students particularly at senior secondary school and vocational is still high. The graduates of SSS as well as VS are still unable to compete with other countries for the jobs at industry due to their lack of competence and skill.

To overcome this problem, Indonesian government set up innovation called MEES which is in line with SEAMEO INNOTECH's Regional Project on Models of Secondary Level Alternative Delivery Modes (ADMs). Other important thing to be investigated, is that successfullness of VS Texmaco in implementing MEES program. So, It is needed to investigate it comprehensively, then the result of this study is used to support the SEAMEO INNOTECH's Regional Project on ADM as an alternative innovation of education to be implemented at SEAMEO member countries.

The objective of this study is to investigate the successful best practice of the implementation of MEES in VS Texmaco representing the MEES project being implemented in Indonesia. The more specifically objectives of the study is to understand comprehensively the implementation of the MEES Model in VS Texmaco concerning the curriculum and learning materials, challenges and issues, and the reasons why VS Texmaco MEES is successful than other support system.

Theoretical Framework

The Multi Entry and Exist System (MEES)

MEES is an innovation of the Office of Educational Research and Development as an Alternative Delivery Modes (ADMs) to solve the problem of increasing rates of dropouts particularly the secondary school students (MOEC, 2007). The need of those students to complete their studies and get their certificates is very high; however, due to their conditions they stopped their studies. There are several factors that make them unable to finish their schooling such as economic factors in which they have to work in order to help their family, the payment of school fees and other needs for schooling such as time for schooling and mobility as they moved from cities and provinces.

In order to meet the needs of the students who are unable to continue their studies in regular schooling, it needs to set up a program relevant to both regular or formal and non formal education or out school, for example, the subject study of SSS or VS particularly the productive or the skill subject such as basic mechanic, basic electrical subject, beverage, accounting subject, and so on can be attained at non-formal education, such as package C or special training or course for certain skills.

When the students who are unable to continue their study and stop for a period of time for example for work or move to another cities, they can attend the course of certain subjects to get a certification of the competence or skill relevant to the school subject. When they want to come back to school, the certification of the subjects can be regarded that the students have already passed the subject. These knowledge and skills they have got both from regular school and non formal school are very useful and relevant for them to get a job which is relevant to the needs of industry, society, government, and other private sectors. The relevance education and training should be and remain relevant to national development needs; industry and service sector needs; regional, local and community needs; individual development needs; and needs relating to the advancement of knowledge, science and technology”. These training is also useful for individual development such as skill development, interpersonal skills, career development, and occupational as well as group development concerned to training and development needs of employees consisting of learning, training, and development (Finlay et al., 1998: 145). The student can get a course of certain subject to develop his/her skill as interpersonal skill or as his/her career development for his/her professional worker at industry when he/she finishes his/her school.

The Education and Training/Relevance of Vocational School and Industry

Education and training is one of the strategies to enhance knowledge, competence, skill and attitude of students, teachers, instructors of vocational school as well as develop their career and profession in order for the graduates to be able to work in industry. Therefore, it is compulsory for the students to get a certificate of competence attained through the theory and practice.
examination conducted by the professional evaluator from industry (Directorate of Vocational School, MOEC 2016). The objective of this examination is to test the students’ competence and skill for the certificate and to strengthen the relevance of vocational school and industry. Besides, the competency test stated in the regulation of Directorate of Vocational School, MOEC 2016, it is also needed to see a job specification, including attitudes, skills, experience, qualifications, motivation and mental as well as physical demands that are required to be able to perform well in the job (Bodnarchuk, 2012:11). These specification are important in order that the work can be done professionally, however if the competence and skill of the worker is not relevance with their jobs, it will produce an unquality product or service. The audiences are well defined and their particular needs are carefully targeted. To strengthen the students competence, it is a must that the teacher should have a strong motivation, much experience about the working industry, understand curriculum needed by the industry by giving them a chance to do practical work in industry. A program that prepares teachers must at least enable them to be successful as they embark on their careers; the courses teachers-in-training take should teach them practical skills as well as provide a theoretical perspective (Charlotte, 2008; Green, 2004; Craft, 2000). The trainers are carefully selected for their support of the aims of the programme, the match between their experience and expertise and particular stages of the training programme; their competence as models of professional development (Craft, 2000:23). Besides the teacher, doing the practical work in industry is also done by students for one to six months, so both teachers and students will have similar experience in industry that makes the teaching and learning process work well.

The subject of the training for students of vocational school should be relevant to the needs of the industry, clear training objectives, high quality training materials, well structured, logical, credible and consistent, detailed and comprehensive training notes, common to all involved. On the other hand, if the education and training of vocational school is not relevant to the needs of industry, the education and training will not be effective and efficient and make it miss match with the needs of industry, Bridges and Husbands (Eds) (1996:78) cited Fullan (1991:316) stated that the staff development failed for a complex matrix of reasons due to the lack of relevance, poor follow-up to training as well as an absence of response to individual concerns.

The relevance of the education and training with the needs of industry, society at vocational school will produce quality human resource for middle workers at industry. In the system of the MEES, the relevance of training and education with the needs of industry is one of the strategies to help students who cannot continue their studies regularly due to their time and economic constraints but still need to complete their schooling at vocational school.

Facilities

Facilities is one the important factors in vocational school. There are varieties of programs at vocational school which needs facilities. There are some important facilities for vocational school to make the quality teaching/learning process work well i.e. IT and modern machine and technology. In relation to the teaching/learning process and the skill of students of vocational school for industry, Qualify instructors to operate the machines are required. The improvement of science and skill of workers will not work well if the facilities of instructional learning do not meet the aspects and context of learning instruction. Therefore, facilities of instructional learning should meet the needs of education instructional learning as Arai (2005:1) (ed) stated “knowledge and skill chains depend on infrastructure systems fulfilling missions, facilitate the school needs to support the educational program and the teaching staff. The fulfillment of education instructional learning will improve the VS learners’ competence and skill as the standard of industry.

METHODOLOGY

Data collection used were observation guides, photo and video documentation, key information interviews, and review of secondary data.

In analyzing the data, the researcher described the sequence of the empirical data gathered from secondary source. The process of analyzing data follows these procedures: examining, categorizing, tabulating the frequency of events, recombining evidence, using arrays to display the data, creating displays, ordering the information, using various interpretations, triangulation, and making a conclusion.

FINDINGS OF THE STUDY

There are several factors that contribute to a successful MEES implementation. First is the flexibility of time for the students to determine their schedule. Through this, the students have more flexible time to continue their studies. Second is the curriculum and learning materials were designed especially for the MEES learners with the help of members from the target industry and business sector. As a result, the learners were able to obtain a certificate and acquire the skills for work.

There is a strong commitment from both society and industry as well as the school to help learners finish their studies. This reduced the number of dropouts and help
the unskilled workers to acquire the skills they need. Third, MEES is conducted in schools especially vocational schools which have links and match with the industry and the world of business. Link and match means that the program of school particularly MEES program and vocational school program should be in relation to the needs of company, both soft skill and hard skill. Soft skill refers to the program and the hard skill refers to the skills needed by the company. Link and match is needed to make guarantee that the product or the graduate of vocational school will be useful for the company and also the graduate will directly work at the company which needs the skill of the vocational school graduate.

By improving and enhancing the teaching and learning, MEES enhances and increases the number of graduates who have previously dropped out. By giving a chance to the dropouts to continue their studies in school at their chosen schedule, they are better to manage their studies and work. By having a certificate of secondary school (senior high school or vocational school) and the needed skills, the graduates of MEES have better opportunities to find a job or become entrepreneurs themselves.

In improving learning outcomes, one element of success is a needs-based curriculum and learning materials based on the standards of national education.

Fourth. Aside from MOEC, there were other agencies, both government and non-government that supported the MEES to ensure its success.

- National Government provide computers, books, and learning facilities. Age is not a requirement in MEES, recognition of the competence based on industry level, provision of scholarship
- Capacity enhancement for the school head was done by inviting the school principal to be part of the government’s innovations team. Industry approved students’ competence and helped students to strengthen their skills needed by the industry in order to get a certificate based on the link and match program.
- Graduates are given the opportunity to work at the company (See Figure 1 and 2).

Private VS TEXMACO in Karawang, West Java

One of the schools implementing MEES is VS TEXMACO in Karawang, West Java. The VS Texmaco was established in 1997 under the Foundation of Developing Science and Technology Texmaco. During its earlier operation, it has produced skilled workers and until now it still continues to produce graduates/workers who are always ready to work based on the needs of the industry. VS Texmaco also conducts a regular and special program called MEES which aims to produce skilled workers needed by the industry. MEES at VS Texmaco is an alternative model to solve the problems of the increasing number of dropouts and repeaters as well as cater to workers of the Texmaco industry.

Due to the industrial need of skilled workers who have good competence, VS Texmaco is taking part to produce very competent and skilled workers to fulfill the needs of industries. Texmaco Micro Indo Utama Karawang was the industry link of VS TEXMACO which provided most of the support for the school in terms of school facilities, machines and equipment needed for MEES courses including on the job training of learners, who would be employed for some time in the company and still able to continue their schooling. The company used to produce and assemble electronics and car machine parts such that the MEES courses offered were industrial electricity and machine technique.

Due to the global economic crunch experienced in the late 1990’s, Texmaco Company also experienced economic problems. Given this condition, VS Texmaco no longer receives any support from the industry, however the school facilities, equipment and machines needed for the courses were donated by the company as it embarked on a new business venture. Due to the withdrawal of support by the Texmaco Company, the school solicits and receives support from the family of students and some industries around the school.

VS Texmaco continues to implement the two MEES programs: Technique of Industrial Electricity program and Technique of Machine Program with a total enrolment of 1,336 students from Grades 1,2,3 . There were 490 students in Grade I, 501 in Grade II, and 431 in Grade III. (Vocational School Texmaco, 2016).

The following data shows some statistics to support clientele reached and number of passing certification level under the MEES program. (VS TExMACO data) (See Table 1 and 2).

Accreditation and Curriculum. Skill Competence consists of Specific Skill Competence, Machine Technique, Tecnique of Industrial Electricity, and Productive skill. The accreditation of these subjects is based on the criteria (1 = Excellent) (2 = Good) (3 = Fair) (4 = poor), and these subjects are all A (excellent).

Due to the success of the MEES program, there is no more dropped out students and repeaters at the VS Texmaco (See Table 3 and 4).

The data of VS Texmaco employs 53 teachers and 22 Administrative staff. The Facilities consists of internet, teachers’ room, principal room, classrooms, laboratorium, library, praying room, canteen, unit production room, workshop, machine CNC, computer room, design art room, assembler, assembling, PLC, machine practice room, digging machine, and electricity room, industrial automation room, soudage enginering room, machine design room and library. The industries that are linked and matched with VS Texmaco are ASI Company and Harmonic Company. Instructional learning process uses e-learning system and entrepreneurship.

The subjects of study are Islamic religion, local content, art and culture, counseling, sport, Indonesian Language, Civic, History, Chemistry, Social Sciences,
The system of entry and exit above shows that the secondary schools students may come from and/or go to one of the secondary schools (senior secondary school, vocational school, or Madrasah Islamic senior high school) at the time, place, or stream, kinds of education they choose based on their preferred time and place. However, they have to take an entry test (placement test). The result of which will be the basis in determining where to place the student in terms of level of grade/class, subjects to be attended/completed, and kinds of competencies to be achieved.

Figure 1. The general model and principles of MEES.
Some principles of MEES are flexible in instruction, free to enter and exit among the training institutions: Formal (Senior Secondary School and Vocational School) and Non formal (package A,B,C, and other training courses) or informal streams of study (self study). The approval of equality and equity of competence (certificate of competence) for kinds and level of competence gained through different level and stream of education.

The description of MEES implementing in the secondary level:

Multi Entry Exit System (MEES) is a flexible educational model that emphasizes flexibility of time to finish the program, place of school, cross-cutting of level, streams, and kinds of education. It implements flexibility which allows participants to determine their own time, level, and kinds of education such as non-formal or formal (general or vocational school). This system gives a chance to students who want to stop their studies in certain times and come back to school or in another school based on their needs to learn another new skill (re-skilling).

Figure 2. Level and stream of education and MEES implementing in the secondary level.
Table 1. Data of enrolment of the MEES program of VS TEXMACO (Data 2015/2016/2017)

<table>
<thead>
<tr>
<th>No.</th>
<th>SKILL</th>
<th>Enrolment</th>
<th>Grade 1</th>
<th>RB</th>
<th>Grade 2</th>
<th>RB</th>
<th>Grade 3</th>
<th>Total</th>
<th>Pass the Exam</th>
<th>No. of Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Technique of Machine</td>
<td>775</td>
<td>4</td>
<td>249</td>
<td>0</td>
<td>6</td>
<td>244</td>
<td>2</td>
<td>6</td>
<td>775</td>
</tr>
<tr>
<td>2</td>
<td>Technique of Industrial Electricity</td>
<td>182</td>
<td>218</td>
<td>48</td>
<td>78</td>
<td>3</td>
<td>44</td>
<td>83</td>
<td>3</td>
<td>182</td>
</tr>
<tr>
<td>3</td>
<td>Technique Of Industrial Automation</td>
<td>92</td>
<td>20</td>
<td>30</td>
<td>12</td>
<td>1</td>
<td>62</td>
<td>8</td>
<td>2</td>
<td>92</td>
</tr>
<tr>
<td>4</td>
<td>Technique Soudage Engineering</td>
<td>73</td>
<td>0</td>
<td>34</td>
<td>0</td>
<td>1</td>
<td>39</td>
<td>0</td>
<td>1</td>
<td>73</td>
</tr>
<tr>
<td>5</td>
<td>Technique OF Machine Design</td>
<td>53</td>
<td>5</td>
<td>35</td>
<td>4</td>
<td>1</td>
<td>18</td>
<td>1</td>
<td>1</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Total Number</td>
<td>1175</td>
<td>247</td>
<td>396</td>
<td>94</td>
<td>12</td>
<td>407</td>
<td>94</td>
<td>13</td>
<td>372</td>
</tr>
</tbody>
</table>

Table 2. The average of national examination (Data 2015/2016)

<table>
<thead>
<tr>
<th>No</th>
<th>Subject</th>
<th>Cumulative Index Achievement Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mathematics</td>
<td>7.20</td>
</tr>
<tr>
<td>2</td>
<td>Indonesian Language</td>
<td>8.10</td>
</tr>
<tr>
<td>3</td>
<td>English</td>
<td>8.00</td>
</tr>
<tr>
<td>4</td>
<td>Productive Skill</td>
<td>8.00</td>
</tr>
</tbody>
</table>

Table 3. Number of Students according to Age (Data 2016/2017)

<table>
<thead>
<tr>
<th>No</th>
<th>Age</th>
<th>Number of Students</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Grade I</td>
</tr>
<tr>
<td>1</td>
<td>≥ 15 years old</td>
<td>290</td>
</tr>
<tr>
<td>2</td>
<td>16 years old</td>
<td>187</td>
</tr>
<tr>
<td>3</td>
<td>17 years old</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>18 years old</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>19 years old</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 4. Parents’ Economic Status and Students’ Previous School (Data 2016/2017)

<table>
<thead>
<tr>
<th>No</th>
<th>Parents Economy Status</th>
<th>Number of Students</th>
<th>Students Previous School</th>
<th>Number of Students</th>
<th>National Exam (Rank): 1-10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Grade I</td>
<td>Grade II</td>
<td>Grade III</td>
<td>Junior High School</td>
</tr>
<tr>
<td>1</td>
<td>Middle class</td>
<td>165</td>
<td>25</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Poor class</td>
<td>325</td>
<td>476</td>
<td>401</td>
<td>Madrasah Junior High School Package B</td>
</tr>
</tbody>
</table>

Physics, Entrepreneurship, Science, English, Mathematics, Electrical programs, Mechanical and Automotive programs (See Figure 3).

The features of MEES in VS TEXMACO are free enrolment and no fees are collected, gives a chance for students to leave the school temporarily in consideration of economic reasons (i.e., need to work) or time constraints, and go back to the school. During their time away from the school, they may get a training to get a skill which will be considered or recognized later. When they return to school, they have to take a placement test that will assess their competence and skills before they are placed at the appropriate grade level. Here, they have to fulfill a standard competency of secondary level. Students can stay in school and assist in school activities. The learners who are not physically present in the classroom or working outside of school are provided with learning materials, and at the same time, learners can still acquire the competencies/skills to complete the learning process. Some learners living in far flung areas
were provided with residential facilities and meal subsidies. The graduates of the MEES program were given opportunities to work in the school as school staff or instructors while some continue to pursue their tertiary education while working at the same time in the school.

Students are given additional time in order for them to complete the program. MEES students get the same recognition as students who attend regular school. For example: Two students, Yana and Rahmat, study under MEES and they lived in the school, following the midterm, final semester, and national examination. They were evaluated on their competence and abilities and were directly recruited after getting the test results.

Curriculum and Learning Materials

As designed under the MEES, curriculum is based on the needs of the students in relation to the needs of world of business and industry. Thus, the MEES program in VS TEXMACO offers two courses: technique of machine and technique of industrial electricity. This was the original design during the time that VS TEXMACO was supported by Texmaco Micro Indo Utama Karawang which assembled electronics and car machine parts. Up to the present the curriculum and learning materials are being used, although VS TEXMACO no longer enjoys the support of the company.

MEES learners also take the same basic subjects such as religion, moral Pancasila, Indonesian language under the regular school curriculum although there are some adjustments of the content. They should also pass the test of theory and practicum.

Learners of MEES in VS TEXMACO also undergo assessment which includes formative and summative test of each subject and national final examination. The two kinds of test are combined with the competence test and skills test which are conducted by the industry and business sectors.

Challenges and Issues

After the private company that supported the MEES program of VS TEXMACO withdrew their support, some challenges in continuing the program were faced by the school. Some of the challenges were:

- Sustaining the MEES Program – Although the private company donated the school building and its facilities when they stopped providing support, the financial capability of learners in the program is a challenge to the school. Regular students pay their school fees based on the financial capability of the family, however, those mostly enrolled under the MEES program came from poor families. To sustain the MEES program especially for learners needing financial help, the school allowed them to live in the school with the permission of the parents. The teachers and the rest of the school staff help the learners by including them in the food provision. In return, the learners help by doing the cooking, cleaning their premises and school ground.

- Upgrading the school’s facilities - The school management continuously seeks the support of the government and other stakeholders like provision for computer equipment, books, and other learning materials. This has improved the learning facilities of the school and has also made their curriculum more relevant to the needs of industry.

- Regulation regarding National Competency Test – The current regulation is that all learners need to pass the National Competency Test before proceeding to
tertiary level or diploma level. There were some learners who wanted to proceed to higher level but failed to pass the National Competency Test. This somehow discouraged them although they can already apply for work in the industry. It is also part of regulation that no automatic "retake" of the test is allowed. This is yet to be discussed with the MOEC and Texmaco Vocational School is seeking for an exception for this program. The school also encourages learners who failed the National Competency Test to either return to school or apply for work.

The Success VS TEXMACO MEES

The successful implementation of VS TEXMACO MEES is caused by school staff attaining a level of satisfaction when they are able to help learners who are less fortunate in their economic status, learners are happy when they graduate and gain employment, second grade students who opt to stop schooling temporarily to work can return to the program under the same level. Those who can get certification of the skills they acquired from their work can be considered and given credit thus, the student is not required to take the equivalent subject anymore. VS TEXMACO considers the background of the students such as economic and social situations, and their time schedules, these students are given certain privileges/assistance, for very poor students, they can stay in the school and in return assist in school activities, food is subsidized for MEES learners, students get competence in accordance with the demands of curriculum, students are given additional time in order for them to complete the program, and students get the same recognition as those who attend regular school.

DISCUSSION

Based on the findings of the research, MEES program and its implementation in VS Texmaco has achieved the target of the programs, eventhough there are not many students who joint the programs caused by the lack of socialization of the program by the education district office. However, generally MEES has already helped program of the ministry of education and culture (MOEC) in decreasing the school dropout rates particularly the secondary school students who are unable to finish their schooling caused by economic factors, time for schooling and mobility as they moved from cities and provinces. Besides, the provision of MEES helps students continue their studies at regular school and get the VS. MEES has helped support the government program of decreasing dropouts students who have taken special skills for jobs at the special course conducted by the government and private sectors. The students are now continuing again their studies at VS as it states at the Rule of National Education System No. 20 Year 2003 Article 4 Subsection 2 that education is conducted systematically using open system and addressing multi-disciplines. Education with open system is an education that promotes flexibility in determining the time and program across the level and the stream of education (multi entry exit system). Students are allowed to study and work at the same time or take programs at the different level and kind of education integratedly and continuously through face-to-face instruction or through distance education. MEES also helps the government program of twelve year compulsory education as the sustainability of the success of nine-year compulsory education.

CONCLUSION

The case study in VS TEXMACO gave insight as to its implementation of the MEES program. Although, the model is also consistent with the principles of MEES, the school implements the program in different style by addressing the needs and conditions of the learners. This include the non collection of enrollement and other school fees. As in the design, students are allowed to leave school temporarily to earn a living, or to work or due to time constraints but may return to school anytime. The training or work experience they gained while out of school are considered or recognized and can be substituted for appropriate subjects. When they come back to school, they have to take a placement test that will assess their competence and skills before they are placed at the appropriate level. Here, they have to fulfill a standard competency of secondary level. Students who are really very poor are allowed to stay in school, given food provision and assist in school activities. The model as implemented in VS TEXMACO is successful in helping students achieve their secondary certificate with some passing the National Competency standards and proceeded to tertiary level. Other completers were gainfully employed after the program. Still others who are poor continued to stay in school and became members of the school staff; others stay and helped out in some school activities while continuing their tertiary education. To them, the school has become their second home.

An innovation in the program is allowing learners to bring the learning materials with them and continue their studies even while they are working (not physically present in the school). In addition, some learners living in far flung areas are provided with residential facilities and meal subsidies. Students are free to enter and exit to and from formal education or nonformal education. They pay their school fees based on the financial capability of the family.

The graduates of the MEES program were given opportunities to work in the school as school staff or instructors. The school also managed to get support
from the government and other stakeholders for computer equipment, books, and other learning materials. District officials committed to support the program through legislation and policy support at their level.

Another contributing factor to the success of MEES program in VS TEXMACO is that the school had been in collaboration with the industry, central and local governments, and society in overcoming challenges and issues and in supporting the program in the school. The curriculum, teaching and learning materials are designed in accordance to the needs of the industry and learners are allowed to work and study at the same time, leave school anytime when opportunity for work comes and go back to school bringing with them the skills they learned at work which can be used as substitute for appropriate subjects.

RECOMMENDATIONS

The following recommendations are intended for the improvement of the MEES program in VS TEXMACO:

1. The school should update its curriculum, revise and add learning materials, and improve its facilities to better serve the needs of the students.

2. Teachers should lessen study loads and learning material should be made more appropriate to the demand of industry and teachers should use various teaching and learning techniques, interactive teaching using ICT, classroom dialogue, inclusion, assessment for learning, and evidence-based classroom practice.

3. Students must have strong motivation to be successful.

4. The government should continually support this program by providing sophisticated facilities and repairing old ones and by monitoring the program regularly in order to get the information about the lack of implementation, so that the program can be suited with the needs and the demands of the world of work and industry.

5. The industry should keep in touch and commit to help the school in conducting the MEES program by providing the facilities and recruiting the graduates to work in their companies.

6. To sustain the MEES, it is suggested that stakeholders should be consistent in helping the school implement all MEES programs.

ACKNOWLEDGEMENT

The author is grateful to SEAMEO INNOTECH for providing the funding of the research. The author is also thankful to the team members from SEAMEO, Debbie P. Lacuesta (Team Leader) Head and Sr. Specialist, Solutions Development Unit, Maribelle A. Reyno (Senior Officer, Educational Media Unit), Cecilia L. Azcueta (Project Associate, Solutions Development Unit), Mark John Antido (Multimedia Associate, Educational Media Unit) and to the respondents which consisted of Eccep and Aep (District and School officials implementing the MEES system), Suardi (Principal of VS Texmaco), Suryono (coordinator of MEES of VS Texmaco), Gecep Supriyadi (operators), Suharti (a teacher of productive subject), Bakri Nasir (consultant), Wiratno (innovator), and 5 representative students of MEES.

REFERENCES


http://asq.org/learn-about-quality/project-planning-tools/overview/pdca-cycle.html